A structural study of Ruddlesden-Popper phases Sr3-xYx(Fe125Ni075)O7-δ with x ≤ 0.75 by neutron powder diffraction and EXAFS/XANES spectroscopy
Artikel i vetenskaplig tidskrift, 2018

The structures of Ruddlesden-Popper n = 2 member phases Sr 3-x Y x Fe 1 25Ni0.75O 7-δ with 0 ≤ x ≤ 0.75 have been investigated using neutron powder diffraction and K-edge Fe and Ni EXAFS/XANES spectroscopy in order to gain information about the evolution of the oxygen vacancy distribution and Fe/Ni oxidation state with x. Both samples prepared at 1300°C under a flow of N 2 (g), with δ = 1.41-1.00, and samples subsequently annealed in air at 900°C, with δ = 0.44-0.59, were characterized. The as-prepared x = 0.75 phase has δ = 1, the O1 atom site is vacant, and the Fe 3+ /Ni 2+ ions have a square pyramidal coordination. With decreasing x the O3 occupancy decreases nearly linearly to 81% for x = 0, while the O1 occupancy increases from 0 for x = 0.4 to 33% for x = 0. The air-annealed x = 0.75 sample has a δ value of 0.59 and the Fe 3+ /Fe 4+ /Ni 2+ /Ni 3+ ions have both square pyramidal and octahedral coordination. With decreasing x, the δ value decreases to 0.45 for x = 0, implying an increase in the oxidation states of Fe/Ni ions. EXAFS/XANES data show that for the as-prepared samples the coordination changes are predominantly for Ni 2+ ions and that the air-annealed samples contain both Fe 3+ /Fe 4+ and Ni 2+ /Ni 3+ ions.

Författare

J. Grins

Stockholms universitet

Dariusz Wojciech Wardecki

Uniwersytet Warszawski

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi

Stockholms universitet

Kjell Jansson

Stockholms universitet

Stefan Carlson

Lunds universitet

J. J. Biendicho

Catalonia Institute for Energy Research (IREC)

Stockholms universitet

Gunnar Svensson

Stockholms universitet

Journal of Materials Chemistry A

2050-7488 (ISSN)

Vol. 6 13

Ämneskategorier

Oorganisk kemi

Analytisk kemi

Materialkemi

DOI

10.1039/c7ta07113b

Mer information

Senast uppdaterat

2018-09-06