Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers
Artikel i vetenskaplig tidskrift, 2018

The performance of polymer-based membranes for gas separation is currently limited by the Robeson limit, stating that it is impossible to have high gas permeability and high gas selectivity at the same time. We describe the production of membranes based on the ability of graphene oxide (GO) and poly(ethyleneimine) (PEI) multilayers to overcome such a limit. The PEI chains act as molecular spacers in between the GO sheets, yielding a highly reproducible, periodic multilayered structure with a constant spacing of 3.7 nm, giving a record combination of gas permeability and selectivity. The membranes feature a remarkable gas selectivity (up to 500 for He/CO 2 ), allowing to overcome the Robeson limit. The permeability of these membranes to different gases depends exponentially on the diameter of the gas molecule, with a sieving mechanism never obtained in pure GO membranes, in which a size cutoff and a complex dependence on the chemical nature of the permeant is typically observed. The tunable permeability, the high selectivity, and the possibility to produce coatings on a wide range of polymers represent a new approach to produce gas separation membranes for large-scale applications.

Författare

Davide Pierleoni

Universita di Bologna

Matteo Minelli

Universita di Bologna

Simone Ligi

Graphene-XT

Meganne Christian

Istituto per la Microelettronica ei Microsistemi - Bologna CNR IMM

Sebastian Funke

Accurion

Niklas Reineking

Accurion

V. Morandi

Istituto per la Microelettronica ei Microsistemi - Bologna CNR IMM

Ferruccio Doghieri

Universita di Bologna

Vincenzo Palermo

Consiglo Nazionale Delle Richerche

Chalmers, Industri- och materialvetenskap, Material och tillverkning

ACS Applied Materials & Interfaces

1944-8244 (ISSN) 1944-8252 (eISSN)

Vol. 10 13 11242-11250

Ämneskategorier

Analytisk kemi

Annan kemiteknik

Annan kemi

DOI

10.1021/acsami.8b01103

Mer information

Senast uppdaterat

2018-09-06