Anomalous diffusion by the fractional Fokker-Planck equation and Levy stable processes
Kapitel i bok, 2018

The work presented here is a review of current developments in modelling
anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives
and Langevin dynamics where L´evy fluctuations are introduced to model the
effect of non-local transport due to fractional diffusion in velocity space. Distribution
functions are found using numerical means for varying degree of fractionality of the
stable L´evy distribution as solutions to the Fokker-Planck equation and is compared
to results from Langevin simulations. The statistical properties of the distribution
functions are assessed by a generalized normalized expectation measure and entropy
in terms of Tsallis statistical mechanics.

Non-local theory

Tsallis entropy

L´evy noise

Fractional Fokker-Plank Equation.


Johan Anderson

Nukleär teknik

Chalmers, Rymd-, geo- och miljövetenskap

Sara Moradi

Nukleär teknik

Koninklijke Militaire School

Fractional Dynamics and Anomalous Transport in Plasma Science





Grundläggande vetenskaper


Annan fysik

Sannolikhetsteori och statistik

Fusion, plasma och rymdfysik

Mer information

Senast uppdaterat