Gas expulsion in highly substructured embedded star clusters
Artikel i vetenskaplig tidskrift, 2018

We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

stars: formation

methods: numerical

galaxies: star clusters: general

Författare

Juan Pablo Farias Osses

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

M. Fellhauer

Universidad de Concepción

R. Smith

Korea Astronomy and Space Science Institute

R. Dominguez

Universidad de Concepción

J. Dabringhausen

Univerzita Karlova v Praze

Monthly Notices of the Royal Astronomical Society

0035-8711 (ISSN) 1365-2966 (eISSN)

Vol. 476 5341-5357

Ämneskategorier

Astronomi, astrofysik och kosmologi

Atom- och molekylfysik och optik

Metallurgi och metalliska material

DOI

10.1093/mnras/sty597