Ab initio investigation of monoclinic phase stability and martensitic transformation in crystalline polyethylene
Artikel i vetenskaplig tidskrift, 2018

We study the phase stability and martensitic transformation of orthorhombic and monoclimic polyethylene by means of density functional theory using the nonempirical consistent-exchange vdW-DF-cx functional [Phys. Rev. B 89, 035412 (2014)]. The results show that the orthorhombic phase is the most stable of the two. Owing to the occurrence of soft librational phonon modes, the monoclimic phase is predicted not to be stable at zero pressure and temperature, but becomes stable when subjected to compressive transverse deformations that pin the chains and prevent them from wiggling freely. This theoretical characterization, or prediction, is consistent with the fact that the monoclimic phase is only observed experimentally when the material is subjected to mechanical loading. Also, the estimated threshold energy for the combination of lattice deformation associated with the T1 and T2 transformation paths (between the orthorhombic and monoclimic phases) and chain shuffling is found to be sufficiently low for thermally activated back transformations to occur. Thus, our prediction is that the crystalline part can transform back from the monoclimc to the orthorhombic phase upon unloading and/or annealing, which is consistent with experimental observations. Finally, we observe how a combination of such phase transformations can lead to a fold-plane reorientation from {110} to {100} type in a single orthorhombic crystal.

Författare

Par A. T. Olsson

Malmö universitet

Lunds universitet

Per Hyldgaard

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Elsebeth Schröder

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Elin Persson Jutemar

Tetra Pak

Eskil Andreasson

Tetra Pak

Blekinge Tekniska Högskola, BTH

Martin Kroon

Linnéuniversitetet

PHYSICAL REVIEW MATERIALS

2475-9953 (ISSN)

Vol. 2 7 075602

Ämneskategorier

Oorganisk kemi

Fysikalisk kemi

Den kondenserade materiens fysik

Drivkrafter

Hållbar utveckling

Styrkeområden

Materialvetenskap

DOI

10.1103/PhysRevMaterials.2.075602

Mer information

Senast uppdaterat

2018-08-20