Weyl's predicative classical mathematics as a logic-enriched type theory
Artikel i vetenskaplig tidskrift, 2010

We construct a logic-enriched type theory LTTW that corresponds closely to the predicative system of foundations presented by Hermann Weyl in Das Kontinuum. We formalize many results from that book in LTTW, including Weyl's definition of the cardinality of a set and several results from real analysis, using the proof assistant Plastic that implements the logical framework LF. This case study shows how type theory can be used to represent a nonconstructive foundation for mathematics.

predicativism

formalization of mathematics

logic-enriched type theory

Författare

Robin Adams

Royal Holloway University of London

Zhaohui Luo

Royal Holloway University of London

ACM Transactions on Computational Logic

1529-3785 (ISSN) 1557945x (eISSN)

Vol. 11 2 11

Ämneskategorier

Algebra och logik

Datavetenskap (datalogi)

Styrkeområden

Informations- och kommunikationsteknik

Fundament

Grundläggande vetenskaper

DOI

10.1145/1656242.1656246

Mer information

Senast uppdaterat

2022-02-24