Structural subtyping for inductive types with functorial equality rules
Artikel i vetenskaplig tidskrift, 2008

In this paper we study subtyping for inductive types in dependent type theories in the framework of coercive subtyping. General structural subtyping rules for parameterised inductive types are formulated based on the notion of inductive schemata. Certain extensional equality rules play an important role in proving some of the crucial properties of the type system with these subtyping rules. In particular, it is shown that the structural subtyping rules are coherent and that transitivity is admissible in the presence of the functorial rules of computational equality.

Type theory

Subtyping

Inductive types

Coercive subtyping

Författare

Zhaohui Luo

Royal Holloway University of London

Robin Adams

Royal Holloway University of London

Mathematical Structures in Computer Science

0960-1295 (ISSN) 1469-8072 (eISSN)

Vol. 18 5 931-972

Ämneskategorier

Algebra och logik

Datavetenskap (datalogi)

Styrkeområden

Informations- och kommunikationsteknik

Fundament

Grundläggande vetenskaper

DOI

10.1017/S0960129508006956

Mer information

Senast uppdaterat

2022-03-18