CO envelope of the symbiotic star R Aquarii seen by ALMA
Artikel i vetenskaplig tidskrift, 2018

The symbiotic star R Aqr is part of a small sample of binary AGB stars observed with the Atacama Large Millimeter/submillimeter Array (ALMA). The sample stars are: R Aqr, Mira, W Aql, and π1Gru. The sample covers a range in binary separation and wind properties, where R Aqr is the source with the smallest separation. The R Aqr binary pair consists of an M-type AGB star and a white dwarf at a separation of 45 mas, equivalent to about 10 AU at 218 pc. The aim of the ALMA study is to investigate the dependence of the wind shaping on the binary separation and to provide constraints for hydrodynamical binary interaction models. R Aqr is particularly interesting as the source with the smallest separation and a complex circumstellar environment that is strongly affected by the interaction between the two stars and by the high-energy radiation resulting from this interaction and from the hot white dwarf companion. The CO(J = 3 →2) line emission has been observed with ALMA at ∼0.5′′ spatial resolution. The CO envelope around the binary pair is marginally resolved, showing what appears to be a rather complex distribution. The outer radius of the CO emitting region is estimated from the data and found to be about a factor of 10 larger than previously thought. This implies an average mass-loss rate during the past ∼100 yr of 2×10-7M∗yr-1, a factor of 45 less than previous estimates. The channel maps are presented and the molecular gas distribution is discussed and set into the context of what was previously known about the system from multiwavelength observations. Additional molecular line emission detected within the bandwidth covered by the ALMA observations is also presented. Because of the limited extent of the emission, firm conclusions about the dynamical evolution of the system will have to wait for higher spatial resolution observations. However, the data presented here support the assumption that the mass-loss rate from the Mira star strongly varies and is focused on the orbital plane.

Stars: winds, outflows

Binaries: symbiotic

Stars: AGB and post-AGB

Circumstellar matter

Författare

S. Ramstedt

Uppsala universitet

S. Mohamed

University of Cape Town

South African Astronomical Observatory

National Institute for Theoretical Physics

T. Olander

Uppsala universitet

Wouter Vlemmings

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

Theo Khouri

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

S. Liljegren

Uppsala universitet

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 616 A61

Ämneskategorier

Meteorologi och atmosfärforskning

Astronomi, astrofysik och kosmologi

Atom- och molekylfysik och optik

DOI

10.1051/0004-6361/201833394

Mer information

Senast uppdaterat

2018-08-30