Out of the Dark and into the Light - Microscopic Analysis of Bright, Dark and Trapped Excitons
Licentiatavhandling, 2018
The aim of this thesis is to present different strategies to control the optical fingerprint of TMD monolayers via molecules, strain and impurities. Based on a fully quantum-mechanical approach, we show that the coupling of excitons to high-dipole molecules can activate dark excitonic states, resulting in an additional and well-pronounced peak in the optical spectra.
Moreover, we find that these dark excitonic states are very sensitive to strain, leading to crucial energy shifts and intensity changes of the dark exciton signature. Our findings reveal the potential for optical sensing of strain through activation of dark excitons.
Finally, we investigate the possibility of local impurities to trap excitons resulting in localized states.
We study the formation, excitonic binding energies and wave functions of localized excitonic states, all of which depend on the trapping potential. With this, we are able to calculate the photoluminescence signal and investigate the possibility of single-photon emission.
density matrix formalism
localized states
impurities
dark excitons
strain
transition metal dichalcogenides
Bloch equations
Författare
Maja Feierabend
Chalmers, Fysik, Kondenserade materiens teori
Dark excitons in transition metal dichalcogenides
Optical fingerprint of non-covalently functionalized transition metal dichalcogenides
Journal of Physics Condensed Matter,;Vol. 29(2017)p. Article no 384003 -
Artikel i vetenskaplig tidskrift
Proposal for dark exciton based chemical sensors
Nature Communications,;Vol. 8(2017)
Artikel i vetenskaplig tidskrift
Molecule signatures in photoluminescence spectra of transition metal dichalcogenides
Physical Review Materials,;Vol. 2(2018)
Artikel i vetenskaplig tidskrift
Optical Response From Functionalized Atomically Thin Nanomaterials
Annalen der Physik,;Vol. 529(2017)
Reviewartikel
Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides
Physical Review B,;Vol. 96(2017)
Artikel i vetenskaplig tidskrift
Impact of strain on the excitonic linewidth in transition metal dichalcogenides
Dark-exciton based strain sensing in transition metal dichalcogenides
Styrkeområden
Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)
Materialvetenskap
Fundament
Grundläggande vetenskaper
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)
Drivkrafter
Innovation och entreprenörskap
Ämneskategorier
Nanoteknik
Den kondenserade materiens fysik
Utgivare
Chalmers
Nexus-salen, Kemigarden 1
Opponent: Associate Professor Saroj Prasad Dash, Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Gothenburg, Sweden.