The ALMA view of UV-irradiated cloud edges: unexpected structures and processes
Paper i proceeding, 2018
The Orion Bar, an interface region between the Orion A molecular cloud and the H ii region around the Trapezium cluster, is a textbook example of a strongly illuminated dense PDR (photodissociation region). The Bar is illuminated by a FUV field of a few 104 times the mean interstellar radiation field. Because of its proximity and nearly edge-on orientation, it provides a very good template to investigate the chemical content, structure, and dynamics of a strongly irradiated molecular cloud edge. We have used ALMA to mosaic a small field of the Bar where the critical transition from atomic to molecular gas takes place. These observations provide an unprecedented sharp view of this transition layer (≲ 1″ resolution or ≲ 414 AU). The resulting images (so far in the rotational emission of CO, HCO+, H13CO+, SO+, SO, and reactive ions SH+ and HOC+) show the small-scale structure in gas density and temperature, and the steep abundance gradients. The images reveal a pattern of high-density substructures, photo-ablative gas flows and instabilities at the edge of the molecular cloud. These first ALMA images thus show a more complex morphology than the classical clump/interclump static model of a PDR.
In order to quantify the chemical content in strongly FUV-irradiated gas, we have also used the IRAM-30 m telescope to carry out a complete line-survey of the illuminated edge of the Bar in the millimeter domain. Our observations reveal the presence of complex organic molecules (and precursors) that were not expected in such a harsh environment. In particular, we have reported the first detection of the unstable cis conformer of formic acid (HCOOH) in the ISM. The energy barrier to internal rotation (the conversion from trans to cis) is approximately 4827 cm−1 (≈7000 K). Hence, this detection is surprising. The low inferred trans-to-cis abundance ratio of 2.8±1.0 supports a photoswitching mechanism: a given conformer absorbs a FUV stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we have specifically studied with ab initio quantum calculations, was not considered so far in astrochemistry although it can affect the structure of a variety of molecules in PDRs.
Astrochemistry
ISM: clouds
photodissociation regions (PDR)
ISM: molecules
Författare
S. Cuadrado
A. Aguado
ingen
J. Pety
Javier R. Goicoechea
E. Bron
ingen
John H Black
Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik
J. Cernicharo
ingen
E. Chapillon
ingen
A. Fuente
M. Gerin
C. Joblin
O. Roncero
ingen
B. Tercero
ingen
International Astronomical Union, Symposium 332
Vol. S332 210-217
Puerto Varas, Chile,
Ämneskategorier
Astronomi, astrofysik och kosmologi
Atom- och molekylfysik och optik
Teoretisk kemi
Fundament
Grundläggande vetenskaper
Infrastruktur
Onsala rymdobservatorium
DOI
10.1017/S1743921317007761