Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable~Processes
Artikel i vetenskaplig tidskrift, 2018

The~numerical solutions to a non-linear Fractional Fokker--Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The~aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where L\'{e}vy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable L\'{e}vy distribution as solutions to the FFP equation. The~statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The~transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.

non-local theory

Tsallis entropy

Lévy noise

fractional Fokker--Plank equation

anomalous diffusion

Författare

Johan Anderson

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

Sara Moradi

Koninklijke Militaire School

Tariq Rafiq

Lehigh University

Entropy

10994300 (eISSN)

Vol. 20 10 760

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.3390/e20100760

Mer information

Senast uppdaterat

2018-11-06