Fabrication and Characterisation of Carbon Nanotube Array Thermal Interface Materials
Licentiatavhandling, 2018
The largest bottleneck in thermal dissipation originates from thermal interfaces between different surfaces. For this purpose thermal interface materials (TIMs) are used to conform and bridge the interface and thereby alleviate the thermal dissipation restrictions in the interface. However, commercially available TIMs are either of metallic or polymeric nature which implies a compromise between thermal performance and reliability. Carbon nanotube (CNT) arrays have been suggested as a future potential material in order to achieve a TIM with superior thermal and mechanical properties that would ensure simultaneous high thermal performance and reliability. However, proper bonding solutions are still to be developed in order to apply CNT array TIMs in thermal dissipation applications and to ensure a successful market realisation.
This thesis first outlines the field by presenting a thorough literature review of organic functionalization methods for CNT array TIMs. Three different approaches are identified: polymer embedding, polymer bonding and self-assembly based functionalization. The thesis then presents two experimental studies on CNT array TIMs. The first focuses on the development and characterisation of a CNT array TIM using a novel self-assembly based bonding method by employing epoxy chemistry for covalent anchoring. The second part focuses on a reliability study of a CNT array TIM assembled using a polymer bonding method, which is an aspect that previously has been overlooked. The results from the reliability study gave indications that the
mechanical bonding between the CNT array and the growth substrate was susceptible for rapid degradation and further research is required in this field to address this challenge.
carbon nanotubes
reliability test
thermal management
thermal interface material
chemical functionalization
Författare
ANDREAS NYLANDER
Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial
Current status and progress of organic functionalization of CNT based thermal interface materials for electronics cooling applications
2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac),;(2017)p. 175-181
Paper i proceeding
Nylander, A. Fu, Y. Huang, M. Liu, J. Covalent Anchoring of Carbon Nanotube Based Thermal Interface Materials Using Epoxy Silane Monolayers
Nylander, A. Darmawan, CC. Boyon, AB. Divay, L. Samani, MK. Ras, MA. Fortel, J. Fu, Y. Ye, L. Ziaei, A. Liu, J. Thermal Reliability Study of Polymer Bonded Carbon Nanotube Array Thermal Interface Materials
Pilot line production of functionalized CNTs as thermal interface material for heat dissipation in electronics applications (SMARTHERM)
Europeiska kommissionen (EU) (EC/H2020/690896), 2016-01-01 -- 2018-12-31.
Styrkeområden
Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)
Materialvetenskap
Ämneskategorier (SSIF 2011)
Elektroteknik och elektronik
Nanoteknik
Infrastruktur
Nanotekniklaboratoriet
Utgivare
Chalmers
h-bar, C511 MC2
Opponent: Christofer Markou, Ericsson, Sweden