Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts
Artikel i vetenskaplig tidskrift, 2018
hierarchical regulation
high-throughput proteomics
metabolic control analysis
metabolism
enzyme abundance
machine learning
genotype-phenotype problem
multi-omics
Författare
Aleksej Zelezniak
The Francis Crick Institute
University of Cambridge
Kungliga Tekniska Högskolan (KTH)
Chalmers, Biologi och bioteknik, Systembiologi
Jakob Vowinckel
Biognosys AG
University of Cambridge
Floriana Capuano
University of Cambridge
Christoph B. Messner
The Francis Crick Institute
Vadim Demichev
The Francis Crick Institute
University of Cambridge
Nicole Polowsky
University of Cambridge
Michael Mülleder
University of Cambridge
The Francis Crick Institute
Stephan Kamrad
University College London (UCL)
The Francis Crick Institute
Bernd Klaus
European Molecular Biology Laboratory
M. A. Keller
Medizinische Universität Innsbruck
University of Cambridge
M. Ralser
Charité Universitätsmedizin Berlin
The Francis Crick Institute
University of Cambridge
Cell Systems
24054712 (ISSN) 24054720 (eISSN)
Vol. 7 3 269-283Ämneskategorier
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Bioinformatik och systembiologi
Genetik
DOI
10.1016/j.cels.2018.08.001
PubMed
30195436