Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem
Paper i proceeding, 2018

This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determination of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.

Inverse problem

Infinite domain

Hyperbolic equation

Time and space-dependent coefficient

Carleman estimate

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

M. Cristofol

Aix Marseille Université

Shumin Li

University of Science and Technology of China

Springer Proceedings in Mathematics and Statistics

2194-1009 (ISSN) 2194-1017 (eISSN)

Vol. 243 133-145

38th Progress in Electromagnetics Research Symposium, PIERS 2017
St. Petersburg, Russia,

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1007/978-3-319-94060-1_10

Mer information

Senast uppdaterat

2019-01-07