Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem
Paper i proceeding, 2018

This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determination of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.

Inverse problem

Infinite domain

Hyperbolic equation

Time and space-dependent coefficient

Carleman estimate

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

M. Cristofol

Aix-Marseille Université

Shumin Li

University of Science and Technology of China

Springer Proceedings in Mathematics and Statistics

2194-1009 (ISSN) 2194-1017 (eISSN)

Vol. 243 133-145

38th Progress in Electromagnetics Research Symposium, PIERS 2017
St. Petersburg, Russia,

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1007/978-3-319-94060-1_10

Mer information

Senast uppdaterat

2019-01-07