Quantum field theory with classical sources - Linearized quantum gravity
Artikel i vetenskaplig tidskrift, 2019
In a previous work (Skagerstam 2018 arXiv:1801.09947v1 [quant-ph]) and in terms of an exact quantum-mechanical framework, h-independent causal and retarded expectation values of the second-quantized electro-magnetic fields in the Coulomb gauge were derived in the presence of a conserved classical electric current. The classical h-independent Maxwells equations then naturally emerged. In the present work, we extend these considerations to linear gravitational quantum deviations around a flat Minkowski space-time in a Coulomb-like gauge. The emergence of the classical, causal, and properly retarded linearized classical theory of general relativity with a conserved classical energymomentum tensor is then outlined. The quantum-mechanical framework also provides for a simple approach to classical quadrupole gravitational radiation of Einstein and microscopic spontaneous graviton emission and/or absorption processes.
radiation processes
causality
quantum gravity
classical sources