Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence
Artikel i vetenskaplig tidskrift, 2018

Rayleigh-Taylor (RT) fluid turbulence through a bed of rigid, finite-size spheres is investigated by means of high-resolution direct numerical simulations, fully coupling the fluid and the solid phase via a state-of-the-art immersed boundary method. The porous character of the medium reveals a totally different physics for the mixing process when compared to the well-known phenomenology of classical RT mixing. For sufficiently small porosity, the growth rate of the mixing layer is linear in time (instead of quadratical) and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose an effective continuum model to fully explain these results where porosity originated by the finite-size spheres is parametrized by a friction coefficient.

Författare

Gaetano Sardina

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Kungliga Tekniska Högskolan (KTH)

Luca Brandt

Kungliga Tekniska Högskolan (KTH)

G. Boffetta

Universita degli Studi di Torino

A. Mazzino

Università degli Studi di Genova

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 121 22 224501

Drivkrafter

Hållbar utveckling

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

Strömningsmekanik och akustik

Styrkeområden

Produktion

Energi

Fundament

Grundläggande vetenskaper

DOI

10.1103/PhysRevLett.121.224501

Mer information

Senast uppdaterat

2019-01-03