Low-lying zeros of quadratic Dirichlet L-functions: A transition in the ratios conjecture
Artikel i vetenskaplig tidskrift, 2018

We study the 1-level density of low-lying zeros of quadratic Dirichlet L-functions by applying the L-functions Ratios Conjecture. We observe a transition in the main term as was predicted by the Katz-Sarnak heuristic as well as in the lower-order terms when the support of the Fourier transform of the corresponding test function reaches the point 1. Our results are consistent with those obtained in previous work under GRH and are furthermore analogous to results of Rudnick in the function field case.

Författare

Daniel Fiorilli

University of Ottawa

James Parks

Kungliga Tekniska Högskolan (KTH)

Anders Södergren

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

Quarterly Journal of Mathematics

0033-5606 (ISSN) 1464-3847 (eISSN)

Vol. 69 4 1129-1149

Ämneskategorier

Annan fysik

Teoretisk kemi

Matematisk analys

DOI

10.1093/qmath/hay018

Mer information

Senast uppdaterat

2019-02-21