Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases
Artikel i vetenskaplig tidskrift, 2019

Purpose: The aim of this study was to develop a deep learning-based method for segmentation of bones in CT scans and test its accuracy compared to manual delineation, as a first step in the creation of an automated PET/CT-based method for quantifying skeletal tumour burden. Methods: Convolutional neural networks (CNNs) were trained to segment 49 bones using manual segmentations from 100 CT scans. After training, the CNN-based segmentation method was tested on 46 patients with prostate cancer, who had undergone 18 F-choline-PET/CT and 18 F-NaF PET/CT less than three weeks apart. Bone volumes were calculated from the segmentations. The network's performance was compared with manual segmentations of five bones made by an experienced physician. Accuracy of the spatial overlap between automated CNN-based and manual segmentations of these five bones was assessed using the Sørensen-Dice index (SDI). Reproducibility was evaluated applying the Bland-Altman method. Results: The median (SD) volumes of the five selected bones were by CNN and manual segmentation: Th7 41 (3.8) and 36 (5.1), L3 76 (13) and 75 (9.2), sacrum 284 (40) and 283 (26), 7th rib 33 (3.9) and 31 (4.8), sternum 80 (11) and 72 (9.2), respectively. Median SDIs were 0.86 (Th7), 0.85 (L3), 0.88 (sacrum), 0.84 (7th rib) and 0.83 (sternum). The intraobserver volume difference was less with CNN-based than manual approach: Th7 2% and 14%, L3 7% and 8%, sacrum 1% and 3%, 7th rib 1% and 6%, sternum 3% and 5%, respectively. The average volume difference measured as ratio volume difference/mean volume between the two CNN-based segmentations was 5–6% for the vertebral column and ribs and ≤3% for other bones. Conclusion: The new deep learning-based method for automated segmentation of bones in CT scans provided highly accurate bone volumes in a fast and automated way and, thus, appears to be a valuable first step in the development of a clinical useful processing procedure providing reliable skeletal segmentation as a key part of quantification of skeletal metastases.


Artificial intelligence



Prostate cancer


S. L. Belal

Lunds universitet

M. Sadik

Sahlgrenska universitetssjukhuset

R. Kaboteh

Sahlgrenska universitetssjukhuset

Olof Enqvist

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik, Digitala bildsystem och bildanalys

Johannes Ulén

Eigenvision AB

M. H. Poulsen

Odense Universitetshospital

J. Simonsen

Odense Universitetshospital

P. F. Hoilund-Carlsen

Odense Universitetshospital

L. Edenbrandt

Sahlgrenska universitetssjukhuset

E. Tragardh

Lunds universitet

European Journal of Radiology

0720-048X (ISSN)

Vol. 113 89-95



Radiologi och bildbehandling

Medicinsk bildbehandling



Mer information

Senast uppdaterat