Thermodynamic potential of twelve working fluids in Rankine and flash cycles for waste heat recovery in heavy duty diesel engines
Artikel i vetenskaplig tidskrift, 2018

A promising method to improve the efficiency of internal combustion engines is the use of thermodynamic cycles for waste heat recovery (WHR). In this study twelve working fluids are evaluated with regards to their thermodynamic potential for four cycles: the Rankine cycle (RC), the transcritical Rankine cycle (TRC), the trilateral flash cycle (TFC) and the single flash cycle (SFC). An energy and exergy analysis of a heavy duty Diesel engine revealed four sources with potential for WHR: the charge air cooler (CAC), the engine coolant, the exhaust gas recirculation cooler (EGRC) and the exhaust gas. Simulations performed for one engine operating mode, showed that the TFC performed best for the CAC with a power output of 2 kW. Owing to the thermal match between source and cycle, the RC outperformed all other cycles for the coolant with a power output of 5 kW. For the EGRC, the TRC with methanol gave the best output of 8 kW. As for the exhaust, all cycles had an output of around 6 kW with much variation between the fluids. A sensitivity analysis of the condensation temperature, source outlet temperature, degree of superheating, operating mode and expander efficiency showed significant impact on the output.

Organic flash cycle

Transcritical Rankine cycle

Single flash cycle

Waste heat recovery

Internal combustion engine

Organic Rankine cycle

Trilateral flash cycle

Energy analysis

Författare

Jelmer Johannes Rijpkema

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Karin Munch

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Sven B Andersson

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Energy

0360-5442 (ISSN) 18736785 (eISSN)

Vol. 160 996-1007

Ämneskategorier

Annan maskinteknik

Energiteknik

Marin teknik

DOI

10.1016/j.energy.2018.07.003

Mer information

Senast uppdaterat

2019-03-05