Efficient implementation of the localized orthogonal decomposition method
Artikel i vetenskaplig tidskrift, 2019

In this paper we present algorithms for an efficient implementation of the Localized Orthogonal Decomposition method (LOD). The LOD is a multiscale method for the numerical simulation of partial differential equations with a continuum of inseparable scales. We show how the method can be implemented in a fairly standard Finite Element framework and discuss its realization for different types of problems, such as linear elliptic problems with rough coefficients and linear eigenvalue problems.

Localized orthogonal decomposition

Multiscale methods

Subscale correction methods

Efficient numerical solvers

Linear solvers

Multiscale finite elements

Författare

Christian Engwer

Universität Münster

P. Henning

Kungliga Tekniska Högskolan (KTH)

Axel Målqvist

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Daniel Peterseim

Universität Augsburg

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 350 123-153

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Matematisk analys

DOI

10.1016/j.cma.2019.02.040

Mer information

Senast uppdaterat

2019-04-08