Tuning phototactic robots with sensorial delays
Artikel i vetenskaplig tidskrift, 2018

The presence of a delay between sensing and reacting to a signal can determine the long-term behavior of autonomous agents whose motion is intrinsically noisy. In a previous work [Mijalkov, McDaniel, Wehr, and Volpe, Phys. Rev. X 6, 011008 (2016)10.1103/PhysRevX.6.011008], we have shown that sensorial delay can alter the drift and the position probability distribution of an autonomous agent whose speed depends on the illumination intensity it measures. In this work, we consider an agent whose speed and rotational diffusion both depend on the illumination intensity and are subject to two independent sensorial delays. Using theory, simulations, and experiments with a phototactic robot, we study the dependence of the drift and of the probability distribution of the robot's position on the sensorial delays. In particular, the radial drift may have a positive as well as negative sign, and the position probability density peaks in different regions, depending on the choice of the model's parameters. This not only generalizes previous work but also explores new phenomena resulting from the interaction between the two delay variables.

Författare

Maximilian Leyman

Göteborgs universitet

Chalmers, Fysik

Freddie Ogemark

Chalmers, Fysik

Göteborgs universitet

Jan Wehr

University of Arizona

Giovanni Volpe

Göteborgs universitet

Physical Review E

24700045 (ISSN) 24700053 (eISSN)

Vol. 98 5 052606

Ämneskategorier

Transportteknik och logistik

Robotteknik och automation

Sannolikhetsteori och statistik

DOI

10.1103/PhysRevE.98.052606

Mer information

Senast uppdaterat

2019-06-24