Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
Artikel i vetenskaplig tidskrift, 2018

Electrolyte additives are pivotal for stabilization of lithium-ion batteries, by suppressing capacity loss through creation of an engineered solid-electrolyte-interphase-layer (SEI-layer) at the negative electrode and thereby increasing lifetime. Here, we compare four different sulfur-containing 5-membered-ring molecules as SEI-formers: 1,3,2-dioxathiolane-2,2-dioxide (DTD), propane-1,3-sultone (PS), sulfopropionic acid anhydride (SPA), and prop-1-ene-1,3-sultone (PES). Density functional theory calculations and electrochemical measurements both confirm appropriate reduction potentials. For a connection of the protective properties of the SEIs formed to the chemical structure of the additives, the decomposition paths are computed and compared with spectroscopic data for the negative electrode surface. The performance of full-cells cycled using a commercial electrolyte and the different additives reveals the formation of organic dianions to play a crucial beneficial role, more so for DTD and SPA than for PS and PES.

DFT

solid electrolyte interphase

additives

sulfur-containing compounds

battery cycling

Li-ion battery

Författare

Piotr Jankowski

Centre national de la recherche scientifique (CNRS)

Politechnika Warszawska

Chalmers, Fysik, Kondenserade materiens fysik

Niklas Lindahl

Chalmers, Fysik, Kondenserade materiens fysik

Jonathan Weidow

Chalmers, Fysik, Kondenserade materiens fysik

W. Wieczorek

Centre national de la recherche scientifique (CNRS)

Politechnika Warszawska

Patrik Johansson

Chalmers, Fysik, Kondenserade materiens fysik

Centre national de la recherche scientifique (CNRS)

ACS Applied Energy Materials

25740962 (eISSN)

Vol. 1 2582-2591

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Materialvetenskap

Ämneskategorier (SSIF 2011)

Energiteknik

Atom- och molekylfysik och optik

Energisystem

Den kondenserade materiens fysik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Chalmers materialanalyslaboratorium

DOI

10.1021/acsaem.8b00295

Mer information

Senast uppdaterat

2024-01-03