Direct hot-carrier transfer in plasmonic catalysis
Artikel i vetenskaplig tidskrift, 2019

Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag147) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to occur from the occupied states of Ag to the unoccupied molecular orbitals of CO. We determine the probability of this process and show that it depends on the adsorption site of CO. Our results are expected to aid the design of more efficient metal-molecule interfaces for plasmonic catalysis.

Författare

Priyank V. Kumar

Eidgenössische Technische Hochschule Zürich (ETH)

Tuomas Rossi

Chalmers, Fysik, Material- och ytteori

Mikael Juhani Kuisma

Jyväskylän Yliopisto

Paul Erhart

Chalmers, Fysik, Material- och ytteori

David J. Norris

Eidgenössische Technische Hochschule Zürich (ETH)

Faraday Discussions

1359-6640 (ISSN) 1364-5498 (eISSN)

Vol. 214 189-197

Ämneskategorier

Atom- och molekylfysik och optik

Teoretisk kemi

Den kondenserade materiens fysik

DOI

10.1039/c8fd00154e

Mer information

Senast uppdaterat

2019-07-12