Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo
Artikel i vetenskaplig tidskrift, 2019

Single-atom alloys, which are prepared byembedding isolated metal sites in host metals, are promisingsystems for improved catalyst selectivity. For technical applications, catalysts based on nanoparticles are preferred thanks to a large surface area. Herein, we investigate hydrogenation of acetylene to ethylene using kinetic MonteCarlo simulations based on density functional theory and compare the performance of Pd/Cu nanoparticles with Pd(111) and Pd/Cu(111). We find that embedding Pd in Cu systems strongly enhances the selectivity and that the reaction mechanism is fundamentally different for nanoparticles and extended surfaces. The reaction mechanism on nanoparticles is complex and involves elementary steps that proceed preferentially over different sites. Edge and corner sites on nanoparticles are predicted to lower the selectivity, and we infer that a rational design strategy in selective acetylene hydrogenation is to maximize the number of (111) sites in relation to edge sites for Pd/Cu nanoparticles.

Författare

Mikkel Jørgensen

Kompetenscentrum katalys

Chalmers, Fysik, Kemisk fysik

Henrik Grönbeck

Chalmers, Fysik, Kemisk fysik

Kompetenscentrum katalys

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 141 21 8541-8549

Länk mellan katalytisk aktivitet och kvantmekaniska beräkningar

Vetenskapsrådet (VR) (2016-05234), 2017-01-01 -- 2020-12-31.

Ämneskategorier

Polymerkemi

Biokemi och molekylärbiologi

Atom- och molekylfysik och optik

Styrkeområden

Nanovetenskap och nanoteknik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1021/jacs.9b02132

PubMed

31063683

Mer information

Senast uppdaterat

2019-07-15