Investigation of the surface species during temperature dependent dehydrogenation of naphthalene on Ni(111)
Artikel i vetenskaplig tidskrift, 2019

The temperature dependent dehydrogenation of naphthalene on Ni(111) has been investigated using vibrational sum-frequency generation spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory with the aim of discerning the reaction mechanism and the intermediates on the surface. At 110 K, multiple layers of naphthalene adsorb on Ni(111); the first layer is a flat lying chemisorbed monolayer, whereas the next layer(s) consist of physisorbed naphthalene. The aromaticity of the carbon rings in the first layer is reduced due to bonding to the surface Ni-atoms. Heating at 200 K causes desorption of the multilayers. At 360 K, the chemisorbed naphthalene monolayer starts dehydrogenating and the geometry of the molecules changes as the dehydrogenated carbon atoms coordinate to the nickel surface; thus, the molecule tilts with respect to the surface, recovering some of its original aromaticity. This effect peaks at 400 K and coincides with hydrogen desorption. Increasing the temperature leads to further dehydrogenation and production of H2 gas, as well as the formation of carbidic and graphitic surface carbon.

Författare

Kess Marks

Stockholms universitet

Milad Ghadami Yazdi

Kungliga Tekniska Högskolan (KTH)

Witold Piskorz

Uniwersytet Jagiellonski w Krakowie

Konstantin Simonov

Uppsala universitet

Robert Stefanuik

Uppsala universitet

Daria Sostina

Paul Scherrer Institut

Ambra Guarnaccio

Consiglo Nazionale Delle Richerche

Ruslan Ovsyannikov

Helmholtz

Erika Giangrisostomi

Helmholtz

Yasmine Sassa

Chalmers, Fysik, Materialfysik

Nicolas Bachellier

Paul Scherrer Institut

Matthias Muntwiler

Paul Scherrer Institut

Fredrik O.L. Johansson

Uppsala universitet

Andreas Lindblad

Uppsala universitet

Tony Hansson

Stockholms universitet

Andrzej Kotarba

Uniwersytet Jagiellonski w Krakowie

Klas Engvall

Kungliga Tekniska Högskolan (KTH)

M. Gothelid

Kungliga Tekniska Högskolan (KTH)

Dan J. Harding

Kungliga Tekniska Högskolan (KTH)

Henrik Öström

Stockholms universitet

Journal of Chemical Physics

0021-9606 (ISSN) 1089-7690 (eISSN)

Vol. 150 24 244704

Ämneskategorier

Oorganisk kemi

Materialkemi

Den kondenserade materiens fysik

DOI

10.1063/1.5098533

Mer information

Senast uppdaterat

2020-08-28