The Effect of Bending Deformation on Charge Transport and Electron Effective Mass of p-doped GaAs Nanowires
Övrig text i vetenskaplig tidskrift, 2019

The crystal and electronic structure of semiconductor nanowire systems have shown sensitive response to mechanical strain, enabling novel and improved electrical, and optoelectrical properties in nanowires by strain engineering. Here, the response of current–voltage (I–V) characteristics and band structure of individual p-doped GaAs nanowires to bending deformation is studied by in situ electron microscopy combined with theoretical simulations. The I–V characteristics of the nanowire change from linear to nonlinear as bending deformation is applied. The nonlinearity increases with strain. As opposed to the case of uniaxial strain in GaAs, the bending deformation does not give rise to a change in the band gap of GaAs nanowire according to in situ electron energy loss spectroscopy (EELS) measurements. Instead, the response to bending deformation can be explained by strain induced valence band shift, which results in an energy barrier for charge carrier transport along the nanowire. Moreover, the electron effective mass decreases as the strain changes from compressive to tensile across the GaAs nanowire in the bent region. Results from this study shed light on the complex interplay between lattice strain, band structure, and charge transport in semiconductor nanomaterials.

band structure

strain engineering

bending deformation

charge transport

GaAs nanowires

Författare

Lunjie Zeng

Chalmers, Fysik, Eva Olsson Group

T. Kanne

Niels Bohr Institute

J. Nygard

Niels Bohr Institute

P. Krogstrup

Wolfgang Jäger

Christian-Albrechts-Universität zu Kiel

Eva Olsson

Chalmers, Fysik, Eva Olsson Group

Physica Status Solidi - Rapid Research Letetrs

1862-6254 (ISSN) 1862-6270 (eISSN)

Vol. 13 8 1900134

Investigation of strain effects of semiconductor nanowires by in situ microscopy transmission electron microscopy

Vetenskapsrådet (VR) (2016-04618), 2017-01-01 -- 2020-12-31.

Enabling Science and Technology through European Electron Microscopy (ESTEEM3)

Europeiska kommissionen (EU) (EC/H2020/823717), 2019-01-01 -- 2022-12-31.

Enabling Science and Technology through European Electron Microscopy (ESTEEM 2)

Europeiska kommissionen (EU) (EC/FP7/312483), 2012-10-01 -- 2016-09-30.

Styrkeområden

Nanovetenskap och nanoteknik

Energi

Ämneskategorier

Atom- och molekylfysik och optik

Teoretisk kemi

Den kondenserade materiens fysik

Infrastruktur

Chalmers materialanalyslaboratorium

DOI

10.1002/pssr.201900134

Mer information

Senast uppdaterat

2023-04-11