Dual mechanism model for fluid particle breakup in the entire turbulent spectrum
Artikel i vetenskaplig tidskrift, 2019

This work provides an in-depth understanding of different breakup mechanisms for fluid particles in turbulent flows. All the disruptive and cohesive stresses are considered for the entire turbulent energy spectrum and their contributions to the breakup are evaluated. A new modeling framework is presented that bridges across turbulent subranges. The model entails different mechanisms for breakup by abandoning the classical limitation of inertial models. The predictions are validated with experiments encompassing both breakup regimes for droplets stabilized by internal viscosity and interfacial tension down to the micrometer length scale, which covers both the inertial and dissipation subranges. The model performance ensures the reliability of the framework, which involves different mechanisms. It retains the breakup rate for inertial models, improves the predictions for the transition region from inertia to dissipation, and bridges seamlessly to Kolmogorov-sized droplets.

turbulence

process

mathematical modeling

simulation

multiphase flow

Författare

Mohsen Karimi

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Ronnie Andersson

Chalmers, Kemi och kemiteknik, Kemiteknik, Kemisk apparatteknik

AICHE Journal

0001-1541 (ISSN) 1547-5905 (eISSN)

e16600

Ämneskategorier

Teknisk mekanik

Energiteknik

Strömningsmekanik och akustik

DOI

10.1002/aic.16600

Mer information

Senast uppdaterat

2019-11-07