High throughput screening of yeast strains for desirable stress tolerant traits for bioethanol production
Övrigt konferensbidrag, 2013
Implementation of very high gravity (VHG) fermentation technology in second generation bioethanol production using raw lignocellulosic biomass is fundamental to establish a commercially viable plant. However, so far the application of this technology is greatly restricted by the unavailability of a fermentative microorganism, resistant enough to the wide variety of stressors commonly encountered in VHG fermentation. In addition, the appropriate tools and knowledge to select such multi-stress tolerant microorganisms and to make a scientifically proven choice of the appropriate candidate strains have been lacking until recently. In this study we screened a large yeast culture collection, consisting of about 700 Saccharomyces cerevisiae and non-Saccharomyces strains from diverse origins, for different desirable traits for bioethanol production. These included, for example, osmotolerance, halotolerance, ethanol tolerance, thermotolerance, and tolerance against fermentation inhibitors like furfural and hydroxymethyl furfural as well as some heavy metals. To this end, a high throughput semi-automated robot was used for spotting up to 96 strains per screening plate. After incubation, plates were scanned and growth was recorded and analyzed using dedicated software. Cluster analysis showed clear differences in tolerance among species and among strains of the same species. In addition, strains showing co-tolerance against different traits could be identified. As such, our study enabled to efficiently select top candidate strains having desirable traits for VHG bioethanol production.
Stress tolerance
Bioethanol
High Throughput Screening
Very high gravity fermentation
Phenotyping