Residue Currents and Fundamental Cycles
Artikel i vetenskaplig tidskrift, 2018

We give a factorization of the fundamental cycle of an analytic space in terms of certain differential forms and residue currents associated with a locally free resolution of its structure sheaf. Our result can be seen as a generalization of the classical Poincare-Lelong formula. It is also a current version of a result by Lejeune-Jalabert, who similarly expressed the fundamental class of a Cohen-Macaulay analytic space in terms of differential forms and cohomological residues.

Författare

Richard Lärkäng

Chalmers, Matematiska vetenskaper, Algebra och geometri

Elizabeth Wulcan

Chalmers, Matematiska vetenskaper, Algebra och geometri

Indiana University Mathematics Journal

0022-2518 (ISSN)

Vol. 67 3 1085-1114

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

Fundament

Grundläggande vetenskaper

DOI

10.1512/iumj.2018.67.7285

Mer information

Senast uppdaterat

2019-10-11