LTCC magnetic sensors at EPFL and TCV: Lessons learnt for ITER
Artikel i vetenskaplig tidskrift, 2019

Innovative 3D high-frequency magnetic sensors have been designed and manufactured in-house for installation on the Tokamak a Configuration Variable (TCV), and are currently routinely operational. These sensors combine the Low Temperature Co-fired Ceramic (LTCC) and the thick-film technologies, and are in various aspects similar to the majority of the inductive magnetic sensors currently being procured for ITER (290 out of 505 are LTCC-1D). The TCV LTCC-3D magnetic sensors provide measurements in the frequency range up to 1MHz of the perturbations to the toroidal (quasi-parallel: delta B-TOR(similar to)delta B-PAR), vertical (quasi-poloidal: delta B-V(ER)similar to delta B-PO(L)), and radial (delta B-RAD) magnetic field components, the latter being generally different from the component normal to the Last Closed Flux-Surface (delta B-NOR). The LTCC-3D delta B-RAD measurements improve significantly on the corresponding data with the saddle loops, which are mounted onto the wall and have a bandwidth of (similar to)3 kHz (due to the wall penetration time). The LTCC-3D delta B-TOR measurements (not previously available in TCV) provide evidence that certain MHD modes have a finite delta B-P(AR) at the LCFS, as recently calculated for pressure-driven instabilities. The LTCC-3D delta B-PO(L) measurements allow to cross-check the data obtained with the Mirnov coils, and led to the identification of large EM noise pick-up for the Mirnov DAQ. The LTCC-3D data for delta B-POL agree with those obtained with the Mirnov sensors in the frequency range where the respective data acquisition overlap, routinely up to 125kHz, and up to 250kHz in some discharges, when the EM noise pick-up on the Mirnov DAQ is removed. Finally, we look at what lessons can be learnt from our work for the forthcoming procurement, installation and operation of the LTCC-1D sensors in ITER.

Magnetic sensors

TCV

LTCC technology

ITER

Författare

D. Testa

Ecole Polytechnique Federale De Lausanne

A. Corne

Ecole Polytechnique Federale De Lausanne

C. Jacq

Ecole Polytechnique Federale De Lausanne

T. Maeder

Ecole Polytechnique Federale De Lausanne

M. Toussaint

Ecole Polytechnique Federale De Lausanne

S. Antonioni

Ecole Polytechnique Federale De Lausanne

R. Chavana

Ecole Polytechnique Federale De Lausanne

S. Couturier

Ecole Polytechnique Federale De Lausanne

F. Dolizy

Ecole Polytechnique Federale De Lausanne

P. Lavanchy

Ecole Polytechnique Federale De Lausanne

J. B. Lister

Ecole Polytechnique Federale De Lausanne

X. Llobet

Ecole Polytechnique Federale De Lausanne

B. Marletaz

Ecole Polytechnique Federale De Lausanne

P. Marmillod

Ecole Polytechnique Federale De Lausanne

C. Moura

Ecole Polytechnique Federale De Lausanne

U. Siravo

Ecole Polytechnique Federale De Lausanne

M. Stoeck

Ecole Polytechnique Federale De Lausanne

L. Blondel

Ecole Polytechnique Federale De Lausanne

B. Ellenrieder

Ecole Polytechnique Federale De Lausanne

G. Farine

Ecole Polytechnique Federale De Lausanne

Y. Fournier

Ecole Polytechnique Federale De Lausanne

M. Garcin

Ecole Polytechnique Federale De Lausanne

Aylwin Iantchenko

Ecole Polytechnique Federale De Lausanne

Chalmers, Fysik, Subatomär fysik och plasmafysik

L. Perrone

Ecole Polytechnique Federale De Lausanne

L. Stipani

Ecole Polytechnique Federale De Lausanne

A. Tolio

Ecole Polytechnique Federale De Lausanne

Politecnico di Milano

P. Windischofer

Technische Universität Wien

Ecole Polytechnique Federale De Lausanne

Fusion Engineering and Design

0920-3796 (ISSN)

Vol. 146 1553-1558

Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (EUROfusion)

Europeiska kommissionen (EU), 2014-01-01 -- 2019-01-01.

Ämneskategorier

Annan fysik

Fusion, plasma och rymdfysik

Annan elektroteknik och elektronik

DOI

10.1016/j.fusengdes.2019.02.127

Mer information

Senast uppdaterat

2019-10-24