Tracing the cold and warm physico-chemical structure of deeply embedded protostars: IRAS 16293−2422 versus VLA 1623−2417 N.
Artikel i vetenskaplig tidskrift, 2018

Context. Much attention has been placed on the dust distribution in protostellar envelopes, but there are still many unanswered questions regarding the physico-chemical structure of the gas.
Aims. Our aim is to start identifying the factors that determine the chemical structure of protostellar regions, by studying and com- paring low-mass embedded systems in key molecular tracers.
Methods. The cold and warm chemical structures of two embedded Class 0 systems, IRAS 16293−2422 and VLA 1623−2417 were characterized through interferometric observations. DCO+, N2H+, and N2D+ were used to trace the spatial distribution and physics of the cold regions of the envelope, while c−C3H2 and C2H from models of the chemistry are expected to trace the warm (UV-irradiated) regions. Results. The two sources show a number of striking similarities and differences. DCO+ consistently traces the cold material at the disk-envelope interface, where gas and dust temperatures are lowered due to disk shadowing. N2H+ and N2D+, also tracing cold gas, show low abundances toward VLA 1623−2417, but for IRAS 16293−2422, the distribution of N2D+ is consistent with the same chemical models that reproduce DCO+. The two systems show different spatial distributions c−C3H2 and C2H. For IRAS 16293−2422, c−C3H2 traces the outflow cavity wall, while C2H is found in the envelope material but not the outflow cavity wall. In contrast, toward VLA 1623−2417 both molecules trace the outflow cavity wall. Finally, hot core molecules are abundantly observed toward IRAS 16293−2422 but not toward VLA 1623−2417.
Conclusions. We identify temperature as one of the key factors in determining the chemical structure of protostars as seen in gaseous molecules. More luminous protostars, such as IRAS 16293−2422, will have chemical complexity out to larger distances than colder protostars, such as VLA 1623−2417. Additionally, disks in the embedded phase have a crucial role in controlling both the gas and dust temperature of the envelope, and consequently the chemical structure.
Key

astrochemistry - stars

low-mass - ism

individual objects

iras 16293-2422 and vla1623-2417

interferometric

methods

observational - techniques

formation - stars

Författare

N. M. Murillo

Universiteit Leiden

E. F. van Dishoeck

Max-Planck-Institut für extraterrestrische Physik

Universiteit Leiden

M. H. D. van der Wiel

Netherlands Institute for Radio Astronomy (ASTRON)

Köpenhamns universitet

J. K. Jorgensen

Köpenhamns universitet

M. N. Drozdovskaya

Köpenhamns universitet

Universiteit Leiden

Hannah Calcutt

Köpenhamns universitet

D. Harsono

Universiteit Leiden

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 617 A120

Protostellar Interferometric Line Survey (PILS)

Europeiska forskningsrådet (ERC), 2019-10-30 -- .

Ämneskategorier (SSIF 2011)

Astronomi, astrofysik och kosmologi

Fundament

Grundläggande vetenskaper

DOI

10.1051/0004-6361/201731724

Mer information

Senast uppdaterat

2021-03-22