Untwisting twisted spectral triples
Artikel i vetenskaplig tidskrift, 2019

We examine the index data associated to twisted spectral triples and higher order spectral triples. In particular, we show that a Lipschitz regular twisted spectral triple can always be "logarithmically dampened" through functional calculus, to obtain an ordinary (i.e. untwisted) spectral triple. The same procedure turns higher order spectral triples into spectral triples. We provide examples of highly regular twisted spectral triples with nontrivial index data for which Moscovici's ansatz for a twisted local index formula is identically zero.

local index theory

noncommutative geometry

K K-Theory

Twisted spectral triples

Författare

Magnus C H T Goffeng

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Bram Mesland

Universiteit Leiden

Adam Rennie

Chalmers, Matematiska vetenskaper

University of Wollongong

International Journal of Mathematics

0129-167X (ISSN)

Vol. 2019 1950076

Ämneskategorier

Algebra och logik

Biblioteks- och informationsvetenskap

Matematisk analys

DOI

10.1142/S0129167X19500769

Mer information

Senast uppdaterat

2019-11-22