Singlet Energy Transfer in Anthracene-Porphyrin Complexes: Mechanism, Geometry, and Implications for Intramolecular Photon Upconversion
Artikel i vetenskaplig tidskrift, 2019

In this work we show that the mechanism for singlet excitation energy transfer (SET) in coordination complexes changes upon changing a single atom. SET is governed by two different mechanisms; Förster resonance energy transfer (FRET) based on Coulombic, through-space interactions, or Dexter energy transfer relying on exchange, through-bond interactions. On the basis of time-resolved fluorescence and transient absorption measurements, we conduct a mechanistic study of SET from a set of photoexcited anthracene donors to axially coordinated porphyrin acceptors, revealing the effect of coordination geometry and a very profound effect of the porphyrin central metal atom. We found that FRET is the dominating mechanism of SET for complexes with zinc-octaethylporphyrin (ZnOEP) as the acceptor, while Dexter energy transfer is the dominating mechanism of SET in a corresponding ruthenium complex (RuOEP). In addition, by analyzing the coordination geometry of the complexes and its temperature dependence, the binding angle potential energy of axially coordinated porphyrin complexes could be estimated. The results of this study are of fundamental importance and are discussed with respect to the consequences for developing intramolecular triplet-Triplet annihilation photon upconversion in coordination complexes.

Potential energy

Porphyrins

Ruthenium compound

Anthracene

Temperature distribution

Energy transfer

Photons

Forster resonance energy transfer

Författare

Fredrik Edhborg

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Betül Kücüköz

Chalmers, Fysik, Bionanofotonik

Victor Gray

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Bo Albinsson

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Journal of Physical Chemistry B

1520-6106 (ISSN) 1520-5207 (eISSN)

Vol. 123 46 9934-9943

Ämneskategorier

Oorganisk kemi

Fysikalisk kemi

Atom- och molekylfysik och optik

Teoretisk kemi

Kemi

Styrkeområden

Nanovetenskap och nanoteknik

DOI

10.1021/acs.jpcb.9b07991

Mer information

Senast uppdaterat

2020-06-25