Simulation of crystallization evolution of polyoxymethylene during microinjection molding cycle
Artikel i vetenskaplig tidskrift, 2019

A mathematical model coupled with a numerical investigation of the evolving material properties due to thermal and flow effects and in particular the evolution of the crystallinity during the full microinjection molding cycle of poly (oxymethylene) POM is presented using a multi-scale approach. A parametric analysis is performed, including all the steps of the process using an asymmetrical stepped contracting part. The velocity and temperature fields are discussed. A parabolic distribution of the velocity across the part thickness, and a temperature rise in the thin zone toward the wall have been obtained. It is attributed to the viscous energy dissipation during the filling phase, but also to the involved characteristic times for the thermal behavior of the material. Depending on the molding conditions and the locations within the micro-part, different evolution of crystallization rates are obtained leading to at least three to five morphological layers, obtained in the same part configuration of a previously work, allowing a clear understanding of the process-material interaction.

microinjection molding

morphology

viscous dissipation

computer modeling

crystallization kinetics

Författare

Benayad Anass

Chouaib Doukkali University

Universite Sidi Mohamed Ben Abdellah

Université de Lyon

Boutaous M'hamed

Université de Lyon

El Otmani Rabie

Chouaib Doukkali University

El Hakimi Abdelhadi

Universite Sidi Mohamed Ben Abdellah

Touache Abdelhannid

Universite Sidi Mohamed Ben Abdellah

Kamal R. Musa

McGill University

Derdouri Salim

National Research Council Canada

Zakariaa Refaa

Chalmers, Arkitektur och samhällsbyggnadsteknik, Byggnadsteknologi

Siginer Dennis

Botswana International University of Science and Technology

Universidad de Santiago de Chile

Polymers for Advanced Technologies

1042-7147 (ISSN) 1099-1581 (eISSN)

Vol. In Press

Ämneskategorier

Annan fysik

Annan materialteknik

Den kondenserade materiens fysik

DOI

10.1002/pat.4819

Mer information

Senast uppdaterat

2020-01-20