LOCAL LANGLANDS CORRESPONDENCE IN RIGID FAMILIES
Artikel i vetenskaplig tidskrift, 2020

We show that local-global compatibility (at split primes) away from p holds at all points of the p-adic eigenvariety of a definite n-variable unitary group. We do this by interpolating the local Langlands correspondence for GL(n) across the eigenvariety by considering the fibers of its defining coherent sheaf. We employ techniques of Chenevier and Scholze used in Scholze's proof of the local Langlands conjecture for GL(n).

p-adic automorphic forms

Eigenvarieties

Galois representations

local Langlands correspondence

Författare

Christian Johansson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Algebra och geometri

James Newton

King's College London

Claus Sorensen

University of California at San Diego (UCSD)

Pacific Journal of Mathematics

0030-8730 (ISSN) 19455844 (eISSN)

Vol. 304 1 65-102

Ämneskategorier

Matematisk analys

DOI

10.2140/pjm.2020.304.65

Mer information

Senast uppdaterat

2020-03-10