Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption
Artikel i vetenskaplig tidskrift, 2019

Transition metal dichalcogenides (TMDCs) have attracted significant attention recently in the context of strong light–matter interaction. To observe strong coupling using these materials, excitons are typically hybridized with resonant photonic modes of stand-alone optical cavities, such as Fabry–Pérot microcavities or plasmonic nanoantennas. Here, we show that thick flakes of layered van der Waals TMDCs can themselves serve as low-quality resonators due to their high background permittivity. Optical modes of such “cavities” can in turn hybridize with excitons in the same material. We perform an experimental and theoretical study of such self-hybridization in thick flakes of four common TMDC materials: WS2, WSe2, MoS2, and MoSe2. We observe splitting in reflection and transmission spectra in all four cases and provide angle-resolved dispersion measurements of exciton-polaritons as well as thickness-dependent data. Moreover, we observe significant enhancement and broadening of absorption in thick TMDC multilayers, which can be interpreted in terms of strong light–matter coupling. Remarkably, absorption reaches >50% efficiency across the entire visible spectrum, while simultaneously being weakly dependent on polarization and angle of incidence. Our results thus suggest formation of self-hybridized exciton-polaritons in thick TMDC flakes, which in turn may pave the way toward polaritonic and optoelectronic devices in these simple systems.

strong coupling



transition metal dichalcogenides


Battulga Munkhbat

Chalmers, Fysik, Bionanofotonik

Denis Baranov

Chalmers, Fysik, Bionanofotonik

Michael Stührenberg

Chalmers, Fysik, Bionanofotonik

Martin Wersäll

Chalmers, Fysik, Bionanofotonik

Ankit Bisht

Chalmers, Fysik, Bionanofotonik

Timur Shegai

Chalmers, Fysik, Bionanofotonik

ACS Photonics

2330-4022 (eISSN)

Vol. 6 1 139-147

Möjliggöra kvantoptik vid rumstemperatur via plasmoner

Stiftelsen Olle Engkvist Byggmästare (2016/38), 2016-01-01 -- 2018-12-31.


Atom- och molekylfysik och optik


Den kondenserade materiens fysik



Mer information

Senast uppdaterat