Tensor hierarchy algebras and extended geometry. Part II. Gauge structure and dynamics
Artikel i vetenskaplig tidskrift, 2020

The recent investigation of the gauge structure of extended geometry is generalised to situations when ancillary transformations appear in the commutator of two generalised diffeomorphisms. The relevant underlying algebraic structure turns out to be a tensor hierarchy algebra rather than a Borcherds superalgebra. This tensor hierarchy algebra is a non-contragredient superalgebra, generically infinite-dimensional, which is a double extension of the structure algebra of the extended geometry. We use it to perform a (partial) analysis of the gauge structure in terms of an L∞ algebra for extended geometries based on finite-dimensional structure groups. An invariant pseudo-action is also given in these cases. We comment on the continuation to infinite-dimensional structure groups. An accompanying paper [1] deals with the mathematical construction of the tensor hierarchy algebras.

M-Theory

Gauge Symmetry

Differential and Algebraic Geometry

Space- Time Symmetries

Författare

Martin Cederwall

Chalmers, Fysik, Teoretisk fysik

Jakob Palmkvist

Chalmers, Matematiska vetenskaper, Algebra och geometri

Chalmers, Fysik, Teoretisk fysik

Journal of High Energy Physics

1126-6708 (ISSN) 1029-8479 (eISSN)

Vol. 2020 2 145

Ämneskategorier (SSIF 2011)

Algebra och logik

Fysik

Geometri

Annan fysik

Matematisk analys

DOI

10.1007/JHEP02(2020)145

Mer information

Senast uppdaterat

2022-04-06