Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive
Artikel i vetenskaplig tidskrift, 2020

Self-discharge is being recognized as one of the main obstacles to implementing the supercapacitor (SC) in standalone self-powered systems. Strategies for addressing this issue include the modification of electrodes, electrolytes, separators, and diverse device configurations. However, an improved self-discharge behavior is often achieved with a large compromise on other prominent figures of merit such as capacitance, energy density, or cycle life of the device. In this work, a thorough comparative electrochemical investigation of SCs containing a neutral aqueous electrolyte, 1 M Li2SO4, and with a liquid crystal (LC) additive, 2% 4-n-pentyl-4′-cyanobiphenyl (5CB) in 1 M Li2SO4, has been carried out at different states of charge. The results demonstrate that the device containing the LC additive 5CB exhibits a reduced self-discharge and leakage current without compromising the capacitive performance at different nominal voltages compared to the behavior of the device without 5CB. We suggest an explanation of the difference of the self-discharge behavior between the devices through tunability of the effective conductivity of the electrolyte composite upon applied voltages. As a result, in an open circuit condition, the device containing LC shows a slower diffusion of ions that facilitates a decreased self-discharge and leakage current.

Supercapacitor

Leakage current

Self-discharge

Liquid crystal

Electrorheology

Författare

Mohammad Mazharul Haque

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Qi Li

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Anderson David Smith

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Volodymyr Kuzmenko

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Per Rudquist

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Per Lundgren

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Peter Enoksson

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Journal of Power Sources

0378-7753 (ISSN)

Vol. 453 227897

Ämneskategorier

Materialkemi

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1016/j.jpowsour.2020.227897

Mer information

Senast uppdaterat

2020-04-01