500 microkelvin nanoelectronics
Artikel i vetenskaplig tidskrift, 2020

Fragile quantum effects such as single electron charging in quantum dots or macroscopic coherent tunneling in superconducting junctions are the basis of modern quantum technologies. These phenomena can only be observed in devices where the characteristic spacing between energy levels exceeds the thermal energy, kBT, demanding effective refrigeration techniques for nanoscale electronic devices. Commercially available dilution refrigerators have enabled typical electron temperatures in the 10 to 100 mK regime, however indirect cooling of nanodevices becomes inefficient due to stray radiofrequency heating and weak thermal coupling of electrons to the device substrate. Here, we report on passing the millikelvin barrier for a nanoelectronic device. Using a combination of on-chip and off-chip nuclear refrigeration, we reach an ultimate electron temperature of Te = 421 ± 35 μK and a hold time exceeding 85 h below 700 μK measured by a self-calibrated Coulomb-blockade thermometer.


Matthew Sarsby

TU Delft

Nikolai Yurttagül

TU Delft

Attila Geresdi

TU Delft

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Nature Communications

2041-1723 (ISSN)

Vol. 11 1 1492


Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik





Mer information

Senast uppdaterat