Unbiased Selection of Decision Variables for Optimization
Artikel i vetenskaplig tidskrift, 2017

Complex chemical processes require complex simulation models. Selecting decision variables for optimization is increasingly difficult. This paper presents a study of a Subset Selection Algorithm (SSA) applied to the selection of decision variables to facilitate a reduction of the decision variable combination sets to consider for a process designer, aimed towards improving said selection, optimization, and thereby resource efficiency. The results help conclude that SSA is able to reduce the consideration set of decision variable combinations for the process designer, and selects combination sets that are more effective in terms of minimizing the objective.

Subset Selection Algorithm (SSA)

optimization

simulation

Författare

Mikael Nolin

Lunds universitet

Niklas Andersson

Lunds universitet

Bernt Nilsson

Lunds universitet

Mark Max-Hansen

Perstorp AB

Oleg Pajalic

Chalmers, Kemi och kemiteknik, Kemiteknik

Computer Aided Chemical Engineering

1570-7946 (ISSN)

Ämneskategorier

Kemiteknik

DOI

10.1016/B978-0-444-63965-3.50044-1

Mer information

Senast uppdaterat

2020-04-22