Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast
Artikel i vetenskaplig tidskrift, 2020

Cells maintain reserves in their metabolic and translational capacities as a strategy to quickly respond to changing environments. Here we quantify these reserves by stepwise reducing nitrogen availability in yeast steady-state chemostat cultures, imposing severe restrictions on total cellular protein and transcript content. Combining multi-omics analysis with metabolic modeling, we find that seven metabolic superpathways maintain >50% metabolic capacity in reserve, with glucose metabolism maintaining >80% reserve capacity. Cells maintain >50% reserve in translational capacity for 2490 out of 3361 expressed genes (74%), with a disproportionately large reserve dedicated to translating metabolic proteins. Finally, ribosome reserves contain up to 30% sub-stoichiometric ribosomal proteins, with activation of reserve translational capacity associated with selective upregulation of 17 ribosomal proteins. Together, our dataset provides a quantitative link between yeast physiology and cellular economics, which could be leveraged in future cell engineering through targeted proteome streamlining.


Tao Yu

Chalmers, Biologi och bioteknik, Systembiologi

Kate Campbell

Chalmers, Biologi och bioteknik, Systembiologi

Rui Pereira

Chalmers, Biologi och bioteknik, Systembiologi

Johan Björkeroth

Chalmers, Biologi och bioteknik, Systembiologi

Qi Qi

Chalmers, Biologi och bioteknik, Systembiologi

Egor Vorontsov

Göteborgs universitet

C. Sihlbom

Göteborgs universitet

Jens B Nielsen

Danmarks Tekniske Universitet (DTU)

Chalmers, Biologi och bioteknik, Systembiologi

BioInnovation Institute

Nature Communications

2041-1723 (ISSN)

Vol. 11 1 1881



Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)

Annan industriell bioteknik





Mer information

Senast uppdaterat