From dynamical to non-dynamical twists
Artikel i vetenskaplig tidskrift, 2005

We provide a construction which gives a twisting element for a universal enveloping algebra starting from a certain dynamical twist. This construction is a quantization of the analogous quasi-classical process given in [Karolinsky and Stolin, Lett. Math. Phys. 60 (2002), 257-274]. In particular, we reduce the computation of the twisting element for the classical r-matrix constructed from the Frobenius algebra the maximal parabolic subalgebra of sl(n) related to the simple root alpha(n-1), to the computation of the universal dynamical twist for sl(n).

Författare

E. Karolinsky

Alexander Stolin

Göteborgs universitet

Chalmers, Matematiska vetenskaper

V. Tarasov

Letters in Mathematical Physics

0377-9017 (ISSN) 1573-0530 (eISSN)

Vol. 71 3 173-178

Ämneskategorier

Matematik

DOI

10.1007/s11005-005-0158-8

Mer information

Skapat

2017-10-06