Experimentally Calibrated Kinetic Monte Carlo Model Reproduces Organic Solar Cell Current–Voltage Curve
Artikel i vetenskaplig tidskrift, 2020

Kinetic Monte Carlo (KMC) simulations are a powerful tool to study the dynamics of charge carriers in organic photovoltaics. However, the key characteristic of any photovoltaic device, its current–voltage (J–V) curve under solar illumination, has proven challenging to simulate using KMC. The main challenges arise from the presence of injecting contacts and the importance of charge recombination when the internal electric field is low, i.e., close to open-circuit conditions. Herein, an experimentally calibrated KMC model is presented that can fully predict the J–V curve of a disordered organic solar cell. It is shown that it is crucial to make experimentally justified assumptions on the injection barriers, the blend morphology, and the kinetics of the charge transfer state involved in geminate and nongeminate recombination. All of these properties are independently calibrated using charge extraction, electron microscopy, and transient absorption measurements, respectively. Clear evidence is provided that the conclusions drawn from microscopic and transient KMC modeling are indeed relevant for real operating organic solar cell devices.

charge injection

morphology

organic photovoltaics

kinetic Monte Carlo simulations

charge recombination

Författare

Sebastian Wilken

Linköpings universitet

Åbo Akademi

Tanvi Upreti

Linköpings universitet

A. Melianas

Stanford University

Staffan Dahlström

Åbo Akademi

Gustav Persson

Nano- och biofysik

Eva Olsson

Nano- och biofysik

Ronald Österbacka

Åbo Akademi

M. Kemerink

Linköpings universitet

Solar RRL

2367198X (eISSN)

Vol. 4 6 2000029

Ämneskategorier

Annan fysik

Biofysik

Annan elektroteknik och elektronik

DOI

10.1002/solr.202000029

Mer information

Senast uppdaterat

2020-07-01