The performance limits of epigraphene Hall sensors doped across the Dirac point
Artikel i vetenskaplig tidskrift, 2020

Epitaxial graphene on silicon carbide, or epigraphene, provides an excellent platform for Hall sensing devices in terms of both high electrical quality and scalability. However, the challenge in controlling its carrier density has thus far prevented systematic studies of epigraphene Hall sensor performance. In this work, we investigate epigraphene Hall sensors where epigraphene is doped across the Dirac point using molecular doping. Depending on the carrier density, molecular-doped epigraphene Hall sensors reach room temperature sensitivities of S-V=0.23V/(VT) and S-I=1440V/(AT), with magnetic field detection limits down to B-MIN=27 nT/root Hz at 20kHz. Thermally stabilized devices demonstrate operation up to 150 degrees C with S-V=0.12V/(VT), S-I=300V/(AT), and B-MIN similar to 100 nT/root Hz at 20kHz. Our work demonstrates that epigraphene doped close to the Dirac point could potentially outperform III-V Hall elements in the extended and military temperature ranges.

Författare

Hans He

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Naveen Shetty

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

T. Kaufmann

TDK Micronas GmbH

M. Cornils

TDK Micronas GmbH

R. Yakimova

Linköpings universitet

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Applied Physics Letters

0003-6951 (ISSN) 1077-3118 (eISSN)

Vol. 116 22 223504

Ämneskategorier

Annan fysik

Annan elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1063/5.0006749

Mer information

Senast uppdaterat

2020-07-21