Fiber-based phase-sensitive optical amplifiers and their applications
Reviewartikel, 2020
Optical parametric amplifiers rely on second-order susceptibility (three-wave mixing) or third-order susceptibility (four-wave mixing) in a nonlinear process where the energy of incoming photons is not changed (elastic scattering). In the latter case, two pump photons are converted to a signal and to an idler photon. Under certain conditions, related to the phase evolution of the waves involved, this conversion can be very effi-cient, resulting in large amplification of an input signal. As the nonlinear process can be very fast, all-optical applications aside from pure amplification are also possible. If the amplifier is implemented in an optical input-phase-sensitive manner, it is possible to amplify a signal wave without excess noise, i.e., with a noise figure of 0 dB. In this paper, we will provide the fundamental concepts and theory of such amplifiers, with a focus on their implementation in highly nonlinear optical fibers relying on four-wave mixing. We will discuss the distinctions between phase-insensitive and phase-sensitive operation and include several experimental results to illustrate their capability. Different applications of parametric amplifiers are also discussed, including their use in optical communication links.