Membrane active Janus-oligomers of β3-peptides
Artikel i vetenskaplig tidskrift, 2020

Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies-key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.

Hydrogen bonds

Complexation

Lipid bilayers

Molecules

Molecular dynamics

Peptides

Hydrophobicity

Stereochemistry

Författare

Imola Cs Szigyártó

Research Centre for Natural Sciences

Judith Mihály

Research Centre for Natural Sciences

András Wacha

Research Centre for Natural Sciences

Dóra Bogdán

Semmelweis Egyetem

Research Centre for Natural Sciences

Tünde Juhász

Research Centre for Natural Sciences

Gergely Kohut

Research Centre for Natural Sciences

Eötvös Loránd University (ELTE)

Gitta Schlosser

Eötvös Loránd University (ELTE)

Ferenc Zsila

Research Centre for Natural Sciences

Vlada Urlacher

Heinrich Heine Universität Düsseldorf

Zoltán Varga

Research Centre for Natural Sciences

Ferenc Fülöp

University of Szeged

Attila Bóta

Research Centre for Natural Sciences

István Mándity

Research Centre for Natural Sciences

Semmelweis Egyetem

Tamas Beke-Somfai

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Research Centre for Natural Sciences

Chemical Science

2041-6520 (ISSN) 2041-6539 (eISSN)

Vol. 11 26 6868-6881

Ämneskategorier

Fysikalisk kemi

Biokemi och molekylärbiologi

Biofysik

Styrkeområden

Hälsa och teknik

Materialvetenskap

DOI

10.1039/d0sc01344g

Mer information

Senast uppdaterat

2020-08-19