Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements
Artikel i vetenskaplig tidskrift, 2020

Objective: Conventional MEG provides an unsurpassed ability to, non-invasively, detect epileptic activity. However, highly resolved information on small neuronal populations required in epilepsy diagnostics is lost and can be detected only intracranially. Next-generation on-scalp magnetencephalography (MEG) sensors aim to retrieve information unavailable to conventional non-invasive brain imaging techniques. To evaluate the benefits of on-scalp MEG in epilepsy, we performed the first-ever such measurement on an epilepsy patient.
Methods: Conducted as a benchmarking study focusing on interictal epileptiform discharge (IED) detectability, an on-scalp high-temperature superconducting quantum interference device magnetometer (high-Tc SQUID) system was compared to a conventional, low-temperature SQUID system. Coregistration of electroencephalopraphy (EEG) was performed. A novel machine learning-based IED-detection algorithm was developed to aid identification of on-scalp MEG unique IEDs.
Results: Conventional MEG contained 24 IEDs. On-scalp MEG revealed 47 IEDs (16 co-registered by EEG, 31 unique to the on-scalp MEG recording). Conclusion: Our results indicate that on-scalp MEG might capture IEDs not seen by other non-invasive modalities. Significance: On-scalp MEG has the potential of improving non-invasive epilepsy evaluation. (C) 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.

Interictal epileptiform discharges

Instrumentation

Epilepsy

Magnetoencephalography

High-critical temperature SQUIDs

Författare

Karin Westin

Karolinska universitetssjukhuset

Karolinska Institutet

Christoph Pfeiffer

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Lau M. Andersen

Karolinska Institutet

Aarhus Universitet

Silvia Ruffieux

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Gerald Cooray

Karolinska universitetssjukhuset

Karolinska Institutet

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Dag Winkler

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Martin Ingvar

Karolinska Institutet

Justin Schneiderman

Göteborgs universitet

Daniel Lundqvist

Karolinska Institutet

Clinical Neurophysiology

1388-2457 (ISSN)

Vol. 131 8 1711-1720

Ämneskategorier

Medicinsk laboratorie- och mätteknik

Annan medicinteknik

Biomedicinsk laboratorievetenskap/teknologi

DOI

10.1016/j.clinph.2020.03.041

PubMed

32504930

Mer information

Senast uppdaterat

2020-09-02