Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements
Artikel i vetenskaplig tidskrift, 2020
Objective: Conventional MEG provides an unsurpassed ability to, non-invasively, detect epileptic activity. However, highly resolved information on small neuronal populations required in epilepsy diagnostics is lost and can be detected only intracranially. Next-generation on-scalp magnetencephalography (MEG) sensors aim to retrieve information unavailable to conventional non-invasive brain imaging techniques. To evaluate the benefits of on-scalp MEG in epilepsy, we performed the first-ever such measurement on an epilepsy patient.
Methods: Conducted as a benchmarking study focusing on interictal epileptiform discharge (IED) detectability, an on-scalp high-temperature superconducting quantum interference device magnetometer (high-Tc SQUID) system was compared to a conventional, low-temperature SQUID system. Coregistration of electroencephalopraphy (EEG) was performed. A novel machine learning-based IED-detection algorithm was developed to aid identification of on-scalp MEG unique IEDs.
Results: Conventional MEG contained 24 IEDs. On-scalp MEG revealed 47 IEDs (16 co-registered by EEG, 31 unique to the on-scalp MEG recording). Conclusion: Our results indicate that on-scalp MEG might capture IEDs not seen by other non-invasive modalities. Significance: On-scalp MEG has the potential of improving non-invasive epilepsy evaluation.
Instrumentation
High-critical temperature SQUIDs
Epilepsy
Interictal epileptiform discharges
Magnetoencephalography
Författare
Karin Westin
Karolinska universitetssjukhuset
Karolinska Institutet
Christoph Pfeiffer
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Lau M. Andersen
Aarhus Universitet
Karolinska Institutet
Silvia Ruffieux
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Gerald Cooray
Karolinska Institutet
Karolinska universitetssjukhuset
Alexei Kalaboukhov
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Dag Winkler
Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik
Martin Ingvar
Karolinska Institutet
Justin Schneiderman
Göteborgs universitet
Daniel Lundqvist
Karolinska Institutet
Clinical Neurophysiology
1388-2457 (ISSN) 18728952 (eISSN)
Vol. 131 8 1711-1720Ämneskategorier
Medicinsk laboratorie- och mätteknik
Annan medicinteknik
Annan fysik
Biomedicinsk laboratorievetenskap/teknologi
DOI
10.1016/j.clinph.2020.03.041
PubMed
32504930