Unsupervised representation learning with Minimax distance measures
Artikel i vetenskaplig tidskrift, 2020

We investigate the use of Minimax distances to extract in a nonparametric way the features that capture the unknown underlying patterns and structures in the data. We develop a general-purpose and computationally efficient framework to employ Minimax distances with many machine learning methods that perform on numerical data. We study both computing the pairwise Minimax distances for all pairs of objects and as well as computing the Minimax distances of all the objects to/from a fixed (test) object. We first efficiently compute the pairwise Minimax distances between the objects, using the equivalence of Minimax distances over a graph and over a minimum spanning tree constructed on that. Then, we perform an embedding of the pairwise Minimax distances into a new vector space, such that their squared Euclidean distances in the new space equal to the pairwise Minimax distances in the original space. We also study the case of having multiple pairwise Minimax matrices, instead of a single one. Thereby, we propose an embedding via first summing up the centered matrices and then performing an eigenvalue decomposition to obtain the relevant features. In the following, we study computing Minimax distances from a fixed (test) object which can be used for instance in K-nearest neighbor search. Similar to the case of all-pair pairwise Minimax distances, we develop an efficient and general-purpose algorithm that is applicable with any arbitrary base distance measure. Moreover, we investigate in detail the edges selected by the Minimax distances and thereby explore the ability of Minimax distances in detecting outlier objects. Finally, for each setting, we perform several experiments to demonstrate the effectiveness of our framework.

Representation learning

Computational efficiency

Minimax distances

Distance measure

Författare

Morteza Haghir Chehreghani

Chalmers, Data- och informationsteknik, Data Science

Machine Learning

0885-6125 (ISSN) 1573-0565 (eISSN)

Vol. 109 11 2063-2097

Ämneskategorier (SSIF 2011)

Annan data- och informationsvetenskap

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

DOI

10.1007/s10994-020-05886-4

Mer information

Senast uppdaterat

2020-12-03