Transition metal dichalcogenide metamaterials with atomic precision
Artikel i vetenskaplig tidskrift, 2020

The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD metamaterials. However, the enabling technology to explore such metamaterials with high precision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure.

Författare

Battulga Munkhbat

Chalmers, Fysik, Bionanofotonik

Andrew Yankovich

Chalmers, Fysik, Nano- och biofysik

Denis Baranov

Chalmers, Fysik, Nano- och biofysik

Moscow Institute of Physics and Technology

Ruggero Verre

Chalmers, Mikroteknologi och nanovetenskap, Nanotekniklaboratoriet

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Timur Shegai

Chalmers, Fysik, Nano- och biofysik

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 11 1 4604

Ämneskategorier (SSIF 2011)

Materialkemi

Annan fysik

Den kondenserade materiens fysik

DOI

10.1038/s41467-020-18428-2

PubMed

32929093

Mer information

Senast uppdaterat

2020-09-28