Long-term performance measurement and analysis of a small-scale ground source heat pump system
Artikel i vetenskaplig tidskrift, 2020
Recent data suggest that heat pumps, despite having the potential to cover over 90% of the global space and water heating demands, only provide less than 5% of global heating. Heat pumps, in general, and ground source heat pumps, specifically, offer significant potential for energy savings and carbon emissions reduction in buildings. The realization of these potential benefits, however, requires proper design, installation, and operation of the entire heat pump system. This paper presents the performance analysis of a Swedish ground source heat pump system providing space heating and hot water to a sports clubhouse. The installation has been carefully instrumented to enable full characterization of the whole system including auxiliary components such as circulation pumps and supplementary heating. Seasonal performance factors, calculated for monthly and annual periods using high-quality, high-resolution measurement data collected over three years of system operation, have been reported based on the SEPEMO (SEasonal PErformance factor and MOnitoring for heat pump systems) and Annex 52 boundary schemes for evaluating and benchmarking the performance of the ground source heat pump system. The auxiliary system components were shown to have a large impact on the overall performance of the system. In particular, the legionella protection system was found to affect performance considerably. Recommendations as to how to improve the performance of the system under study and other similar systems are made from the design, installation, and operation perspectives.
System performance
Hot water
Ground source heat pumps
Ground heat exchanger
Space heating
Seasonal performance factors